Warenkorb

Unterrichtsideen zur Raumgeometrie

Der Mathematikunterricht Nr. 1+2/2004

Erscheinungsdatum:
März 2004
Schulfach / Lernbereich:
Mathematik
Bestellnr.:
524115
Medienart:
Zeitschrift
43,80 €
Inkl. MwSt.
Lieferstatus:
Vergriffen ohne Neuauflage
* Sonderpreise
(gilt nicht für Händler und Wiederverkäufer)
Abonnenten

Ab 1 Stück à 35,80 €

Referendare (mit Abo)

Ab 1 Stück à 25,06 €

Verantwortlich für den Thementeil in diesem Heft: Günter Schmidt und Hans-Georg Weigand

Zur Einführung von Günter Schmidt und Hans-Georg Weigand

Raumgeometrie: Ein Unterricht mit Kernideen von Timo Leuders

Förderung der Raumanschauung im Geometrieunterricht der Orientierungsstufe. ? Ist der Computer ein willkommenes Werkzeug? von Nicole Bendel und Günter Schmidt

Inhaltliche, kontextuelle und aktivitätsbezogene Aspekte bei räumlich geometrischen Vorstellungen von Frank Hellmich

Training der Raumvorstellung ? direkte Manipulation versus mentale Operation von Heinz Schumann

Durchdringungskörper in der Raumgeometrie von Matthias Ludwig

Analogien zwischen euklidischer und sphärischer Geometrie im computerunterstützten Unterricht zur Kugelgeometrie mit dem Computer von Monika Christl

Raumgeometrie vom ersten Tag an! Einstiege in die Analytische Geometrie von Andreas Filler und Gerald Wittmann

kleingedrucktes:

Abstract

Autor: Leuders, Timo
Titel: Raumgeometrie: Ein Unterricht mit Kernideen.
Quelle: In: Der Mathematikunterricht,(2004) 1–2, S. 5–28

Abstract: Mathematischer Gegenstandsbereich dieses Artikels ist die Raumgeometrie, deren charakteristisches Merkmal in der deutschen Unterrichtstradition wohl in der paradoxen Diskrepanz zwischen Anspruch und Wirklichkeit liegt: Raumgeometrie wird einerseits als bedeutsamer mathematischer Erfahrungsbereich durch alle Jahrgangsstufen hinweg herausgestellt (z.B. MSWF 1999), wohingegen sie in der Praxis allerdings oft ein diffuses Randdasein fuehrt. Und ausgerechnet dort, wo die raeumliche Geometrie zu einem zentralen Thema erklaert wird, naemlich in der analytischen Geometrie der gymnasialen Oberstufe, findet man in der Praxis oft eine Reduktion auf elementare lineare Situationen und oft unverstanden ausgefuehrte Kalkuele. Die Kernfrage dieses Beitrags soll daher lauten: Wie laesst sich die (analytische) Raumgeometrie als ein lebendiges, gehaltvolles und anschauungsreiches Teilgebiet gestalten und welche Funktion koennen hierbei raumgeometrische Kernideen spielen? Dem betont subjektiven Charakter von Kernideen moechte ich durch die folgende Formulierung Rechnung tragen: Zu meinen Kernideen in der Raumgeometrie gehoeren u.a. die folgenden vier, die ich in diesem Beitrag naeher darstellen moechte. Sie sind weder vollstaendig noch ueberschneidungsfrei, und noch weniger koennen sie – nach dem oben gesagten – allgemeiner fachdidaktischer Konsens sein. 1. Kernidee: Drei Dimensionen in zwei einzupacken, ist eine Kunst. 2. Kernidee: Mit Zahlen kann man Orte finden. 3. Kernidee: Der Raum ist erfuellt von Bewegungsspuren. 4. Kernidee: Unsere Welt ist raeumlich – es koennte aber auch anders sein. (Aus der Einleitung).

Schlagwörter: Fundamentale Idee, Unterrichtsziel, Raumgeometrie, Raumvorstellung, Visualisieren, Curriculum, Mathematikunterricht


Autor: Bendel, Nicole; Schmidt, Guenter
Titel: Foerderung der Raumanschauung im Geometrieunterricht der Orientierungsstufe – Ist der Computer ein willkommenes Werkzeug?
Quelle: In: Der Mathematikunterricht,(2004) 1–2, S. 29–46

Abstract: Die Ueberlegungen konzentrieren sich auf die Beschreibung von Wunschvorstellungen zu passender Software, die aus der Erfahrung mit Lernsequenzen zur Entwicklung der Raumgeometrie in der Orientierungsstufe – ueberwiegend 5. Klasse – gewonnen wurden. Dies soll auf der Grundlage von Lernsequenzen zur Geometrie geschehen, wie sie in einem aktuellen Schulbuch konzipiert sind (Lergenmueller/Schmidt 2000).

Schlagwörter: Raumgeometrie, Computerprogramm, Raumvorstellung, Visualisieren, Computerunterstützter Unterricht, Unterricht, Sekundarstufe I


Autor: Hellmich, Frank
Titel: Inhaltliche, kontextuelle und aktivitaetsbezogene Aspekte bei raeumlich-geometrischen Problemstellungen.
Quelle: In: Der Mathematikunterricht,(2004) 1–2, S. 47–53

Abstract: Die Foerderung raeumlicher Kompetenzen wird in vielfaeltigen Unterrichtskonzeptionen fuer den Mathematikunterricht in besonderem Masse herausgestellt. Haeufig wird bei Foerderangeboten fuer die Unterrichtspraxis ein spielerischer Umgang mit raeumlich-geometrischen Aufgabenstellungen fokussiert. Ziel der hier getaetigten Ueberlegungen ist es, Foerderangebote in diesem Bereich hinsichtlich ihrer Planung und Konzeption zu systematisieren. Dies geschieht einerseits auf der Basis theoretischer Konzeptionen, andererseits auf der Grundlage von Ertraegen verschiedener empirischer Studien. Besonderes Augenmerk wird dabei auf inhaltliche, kontextuelle sowie aktivitaetsbezogene Aspekte der Aufgabenpraesentation gelegt. Auf Grundlage des vorgestellten Aufgabenrasters lassen sich damit insbesondere Foerdermaterialien und Aufgabenstellungen einordnen und in Hinblick auf ihre Relevanz fuer den Primar- und fruehen Sekundarstufenunterricht pruefen.

Schlagwörter: Raumvorstellung, Aufgabendidaktik, Unterrichtsentwurf


Autor: Schumann, Heinz
Titel: Training der Raumvorstellung – direkte Manipulation versus mentale Operation.
Quelle: In: Der Mathematikunterricht,(2004) 1–2, S. 54–64

Abstract: Wie ist ein Lernprogramm zu gestalten, das den Loesungsprozess von Raumvorstellungsaufgaben, die Testaufgaben aehneln, durch benutzergesteuerte direkte Manipulation unterstuetzt? (Software-Entwicklungsproblem). Wie effektiv ist die benutzergesteuerte direkte Manipulation beim computerunterstuetzten Loesen von itemaehnlichen Aufgaben fuer das Training der Raumvorstellung im Vergleich mit dem herkoemmlichen, nur mentale Operationen einfordernden Loesen solcher Aufgaben in Printdarstellung? (Software- Evaluationsproblem). Zunaechst beschreiben wir das Ergebnis der Trainingssoftware-Entwicklung und gehen anschliessend auf die Durchfuehrung und die Ergebnisse der entsprechenden Methodenvergleichsuntersuchung Loesen durch benutzergesteuerte direkte Manipulation versus Loesen durch mentale Operation ein. (Aus der Einleitung).

Schlagwörter: Raumgeometrie, Computerprogramm, Raumvorstellung, Test, Visualisieren, Computerunterstützter Unterricht, Unterricht


Autor: Ludwig, Matthias
Titel: Durchdringungskoerper in der Raumgeometrie.
Quelle: In: Der Mathematikunterricht,(2004) 1–2, S. 65–77

Abstract: Waehrend es im Artikel Programmierung plattformunabhaengiger Animationen fuer die Raumgeometrie (Ludwig 2003) mehr um den Computereinsatz, insbesondere die Programmierung von Koerperdurchdringungen ging, soll hier eine grundsaetzlichere Abhandlung ueber die Durchdringungskoerper vor allem im Hinblick auf die Konstruktion vorgestellt werden.

Schlagwörter: Polyeder, Aktivität, Geometrische Konstruktion


Autor: Christl, Monika
Titel: Analogien zwischen euklidischer und sphaerischer Geometrie im computerunterstuetzten Unterricht zur Kugelgeometrie.
Quelle: In: Der Mathematikunterricht,(2004) 1–2, S. 78–90

Abstract: Im Aufsatz wird zunaechst auf Analogien zwischen euklidischer und sphaerischer Geometrie eingegangen. Diese beruhen darauf, dass die euklidische Geometrie der Grenzfall der sphaerischen Geometrie fuer unendlich grosse Kugelradien ist bzw. beide Geometrien in der projektiven Geometrie enthalten sind. Anschliessend wird ein computerunterstuetzter Lehrgang zur Kugelgeometrie vorgestellt. Der Computer erweist sich hier als geeignetes Hilfsmittel, das die Schueler befaehigt im Unterricht selbststaendig experimentell zu arbeiten und ihr raeumliches Vorstellungsvermoegen zu foerdern. Darueber hinaus werden Analogien zwischen euklidischer und sphaerischer Geometrie herausgearbeitet und damit kumulatives, vernetzendes Lernen im Unterricht praktiziert.

Schlagwörter: Programm, Euklidische Geometrie, Computerunterstützter Unterricht, Stoffauswahl, Curriculum, Sphärik, Unterrichtsentwurf


Autor: Filler, Andreas; Wittmann, Gerald
Titel: Raumgeometrie vom ersten Tag an. -Einstiege in die analytische Geometrie.
Quelle: In: Der Mathematikunterricht,(2004) 1–2, S. 91–103

Abstract: Der Beitrag befasst sich speziell mit der Einfuehrung in die Analytische Geometrie als eine koordinatenbezogene Raumgeometrie. Die Ziele fuer den Einstieg in die Analytische Geometrie lassen sich wie folgt formulieren: Die Schueler sollen – das Beschreiben geometrischer Koerper durch dreidimensionale kartesische Koordinaten und verschiedene Moeglichkeiten zu ihrer Veranschaulichung erlernen; – die Notwendigkeit der Anwendung analytischer Methoden in der Geometrie erfahren; – die Motivation zur weiteren Beschaeftigung mit der Analytischen Geometrie erwerben. Im Folgenden werden hierzu zwei Vorschlaege unterbreitet, die an die Elementargeometrie der Sekundarstufe I anknuepfen und zwei genuin geometrische Einstiege zur Analytischen Geometrie des Raumes aufzeigen: – Ein erster Einstieg erfolgt ueber Objektstudien an interessanten Koerpern wie Tetraeder und Oktaeder. Die Schueler arbeiten mit Modellen und Schnittzeichnungen. – Ein zweiter Einstieg nutzt die Moeglichkeiten von 3D-Grafiksoftware: Beim Erstellen von Bildern oder Filmsequenzen am Computer sammeln die Schueler erste Erfahrungen mit der Beschreibung von Koerpern durch Koordinaten. Beide Alternativen sind fuer den Unterricht in Grundkursen und insbesondere auch fuer leistungsschwaechere Schueler geeignet. Vielfach werden experimentelle und heuristische Zugaenge und Arbeitsweisen gefoerdert. Fuer Leistungskurse ergeben sich infolge offener Aufgabenstellungen zahlreiche Differenzierungsmoeglichkeiten zur Foerderung leistungsstarker Schueler. Hiermit wird der Forderung nach einer neuen Unterrichtskultur auch in der Sekundarstufe II Rechnung getragen.

Schlagwörter: Fundamentale Idee, Software, Geometrie, Programm, Raumgeometrie, Sekundarstufe II, Einstieg, Analytische Geometrie


Bisher erschienene Ausgaben:

* Preise zuzüglich Versandkosten. Abonnenten unserer Zeitschriften erhalten viele Produkte des Friedrich Verlags preisreduziert. Bitte melden Sie sich an, um von diesen Vergünstigungen zu profitieren. Aktionsangebote gelten nicht für Händler und Wiederverkäufer. Rabatte sind nicht kombinierbar. Bitte beachten Sie, dass auch der Studentenrabatt nicht auf Aktionspreise angerechnet werden kann. Auf bereits reduzierte Artikel kann kein Rabatt-Gutschein angewendet werden.