Lösungen:

Schwingungen im Fahrstuhl

Aufgabe 1:

- Die Periodendauer der Fahrstuhlschwingung nimmt mit der Etagenzahl ab.
- In den oberen Etagen ist das Fahrstuhlseil kürzer als unten.
- Für die Schwingungsdauer eines Fadenpendels gilt

$$T=2\pi\,\sqrt{\frac{l}{g}}\,.$$

- Die Fallbeschleunigung g beträgt 9,81 m/s².
- Der Aufzug lässt sich als Federpendel betrachten, dessen Periodendauer $T=2\pi\,\sqrt{\frac{m}{D}}$ ist.
- Die Federkonstante ist proportional zur reziproken Seillänge $\left(D \sim \frac{1}{I}\right)$.
- Betrachtet man ein Seil als Federpendel, ist das Quadrat der Periodendauer proportional zur Seillänge (T² ~ I).
- Neben der Seillänge hat auch das Dämpfungssystem des Aufzugs einen Einfluss auf die Periodendauer.

Aufgabe 2:

Michi1182 wohnt im 17. Stock, d.h., das Hochhaus hat mindestens 17 Etagen. Bei einer Etagenhöhe von ca. 3 m beträgt die Seillänge somit mindestens 51 m.

Mit g = 9.81 m/s² und l = 51 m ergibt sich die Periodendauer T zu

$$T = 2\pi \sqrt{\frac{I}{g}} = 2\pi \sqrt{\frac{51 \, m}{9,81 \frac{m}{s^2}}} \approx 14 \, s.$$

Die Periodendauer der vertikalen Aufzugsschwingung ist deutlich geringer. Darüber hinaus wäre bei den kleinen Auslenkungen des Seils eine Schwingung mit T=14 s mit dem Körper wohl gar nicht wahrnehmbar.

Aufgabe 3:

Die Periodendauer ist abhängig von der Federkonstanten, und die Federkonstante wird ihrerseits von der Seillänge mitbestimmt. Somit hat die Seillänge auch einen Einfluss auf die Periodendauer.

$$T = 2\pi \sqrt{\frac{m}{D}}$$

$$D = \frac{E \cdot A}{I}$$

$$T = 2\pi \sqrt{\frac{m \cdot l}{E \cdot A}} \Rightarrow T^2 \sim l$$

(mit E Elastizitätsmodul des Seils, A Seilguerschnitt).

Aufgabe 4:

- b) Tabelle 1 bzw. Abbildung 1 geben das Ergebnis einer Beispielmessung wieder; diese wurde an mehreren Fahrstühlen wiederholt.
 - Zur näherungsweisen Bestimmung der Seillänge wurde die Etagenhöhe zu 3 m ermittelt und die Seillänge I_0 (Seillänge im obersten Stock) zu 0,5 m abgeschätzt. Das berechnete Bestimmtheitsmaß von 0,95 bestätigt den vermuteten linearen Zusammenhang.
- c) Ja. Würde nur die geschätzte Seillänge zur Schwingung beitragen, müsste sich eine Ursprungsgerade ergeben; der Ordinatenabschnitt weicht jedoch signifikant von Null ab. Denkbar wäre auch, dass das Seil über eine feste Rolle umgelenkt wird und dadurch die geschätzte Seillänge den tatsächlichen Wert unterschreitet.

Etagen-	Etagenzahl N			$I = n \cdot h + I_0$
zahl	von oben	<i>T</i> in s	<i>T</i> ² in s ²	in m
11	0	0,15	0,02	0,50
10	1	0,16	0,03	3,50
9	2	0,20	0,04	6,50
8	3	0,22	0,05	9,50
7	4	0,22	0,05	12,50
6	5	0,24	0,06	15,50
5	6	0,26	0,07	18,50
4	7	0,26	0,07	21,50
3	8	0,27	0,07	24,50
2	9	0,27	0,07	27,50
1	10	0,28	0,08	30,50

Tab. 1: Versuchsbeispiel mit der gemessenen Etagenhöhe $h=3\,\mathrm{m}$ und der geschätzten Seillänge in der obersten Etage $I_0=0,5\,\mathrm{m}$

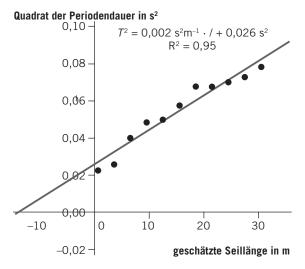


Abb. 1: Grafische Darstellung der Messwerte