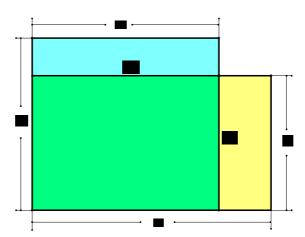
Beschreibung des Heron-Verfahrens

aus Weigand u. Weth, Computer im Mathematikunterricht, - Neue Wege zu alten Zielen, Spektrum-Verlag, S. 57f

Eine Möglichkeit für eine effiziente Berechnung ist der Heron-Algorithmus $\{XE\}$ "Heron-Algorithmus" $\{XE\}$, der zudem den Vorteil einer einprägsamen geometrischen Veranschaulichung besitzt. Wir interpretieren die Zahl N, deren Quadratwurzel $\{XE\}$ "Quadratwurzel" $\{XE\}$ wir suchen, als den Flächeninhalt eines Rechtecks $\{XE\}$ mit den beiden Seitenlängen


$$x_1$$
 (beliebig) und $b_1 = \frac{N}{x_1}$.

Wir suchen nun ein Quadrat der Seitenlänge s, das denselben Flächeninhalt wie R_1 hat. Das Vorgehen ist folgendermaßen: Als neue Seitenlänge x_2 nehmen wir den Mittelwert zwischen x_1 und b_1 , also

$$x_2 = \frac{1}{2} \left(x_1 + \frac{N}{x_1} \right)$$

und erhalten ein zu R₁ flächengleiches Rechteck R₂ mit den Seitenlängen

$$x_2 \text{ und } b_2 = \frac{N}{x_2}.$$

Setzt man dieses Verfahren fort, so erhält man als allgemeine Rekursionsformel für die Seitenlängen:

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right) \text{ und } b_{n+1} = \frac{N}{x_{n+1}}.$$

Die folgende Tabelle zeigt diese Berechnung für N = 2, beginnend bei den Startwerten $x_1 = 1$ und $b_1 = 2$.

	А	В	С	D
1				
2	Das Heronverfahren zu Wurzel(2)			
3				
4			<u> </u>	
5	Flacheninhalt =	2	Startwert =	1
6				
7	Seitenlängen	X _k	b	abs(Wurzel(2) - x _k)
8	1	1,000000000000000	2,000000000000000	0,41421356237310
9	2	1,500000000000000	1,333333333333333	0,08578643762690
10	3	1,41666666666667	1,41176470588235	0,00245310429357
11	4	1,41421568627451	1,41421143847487	0,00000212390141
12	5	1,41421356237469	1,41421356237150	0,00000000000159
13	6	1,41421356237309	1,41421356237310	0,00000000000000
14	7	1,41421356237309	1,41421356237310	0,00000000000000
15	8	1,41421356237309	1,41421356237310	0,00000000000000
16				

Die Excel-Datei finden Sie unter "heron.xls".