2. Stunde

Möglicher Schülerbeitrag

Sonderformen der Koordinatengleichung einer Ebene und damit verbundene besondere Ebenenlagen

Tafelanschrift Nachträgliche Themenangabe Überschrift

Methodenwechsel

eigenverantwortliches arbeitsgleiches Arbeiten in Gruppen

Der Lehrer erteilt den Schülern den folgenden Auftrag

In Anlehnung an die bisherige Vorgehens- und Argumentationsweise soll selbstständig die besondere Lage von Ebenen ergründet werden, die ebenfalls von Koordinatengleichungen beschrieben werden, in denen ein Glied fehlt; Beweis mittels Punktprobe.

Präsentation

Ein nach dem Zufallsprinzip bestimmter Schüler einer Gruppe schreibt unter der vom Lehrer vorgegebenen Überschrift "Weitere Sonderfälle der Koordinatengleichung einer Ebene" eine mögliche Gleichung an die Tafel und beschreibt die dazugehörige vermutete Ebenenlage. Ein zweiter Schüler derselben Gruppe beweist diese Aussage mittels Punktprobe. Die Schüler erhalten die Aufgabe, einen Merksatz zu formulieren.

Mögliche Präsentation der ersten Gruppe

Weitere Sonderfälle der Koordinatengleichung einer Ebene (ein Koeffizient = 0):

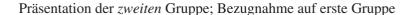
 $a \cdot x_1 + c \cdot x_3 = d$; a, c, $d \ne 0$: fehlendes x_2 -Glied wegen b = 0; Vermutung: Ebene verläuft parallel zur x_2 -Achse, wenn $d \ne 0$

Beweis

Punktprobe mit den Punkten $X_2(0|z|0)$; $(z \in \mathbb{R})$ der x_2 -Achse: falsche Aussage 0 = d wegen $d \neq 0$ – Ebene parallel zur x_2 -Achse; $a \cdot x_1 + c \cdot x_3 = 0$; $a, c \neq 0$: Ebene beinhaltet die x_2 -Achse

Beweis

Punktprobe mit den Punkten $X_2(0|z|0)$; $(z \in \mathbb{R})$ der x_2 -Achse führt zur richtigen Aussage 0=0



 $a \cdot x_1 + b \cdot x_2 = d$; a, b, $d \ne 0$: fehlendes x_3 -Glied wegen c = 0; Vermutung: Ebene verläuft parallel zur x_3 -Achse, wenn $d \ne 0$ **Beweis**

Punktprobe mit den Punkten $X_3(0|0|z)$; $(z \in \mathbb{R})$ der x_3 -Achse: falsche Aussage 0 = d wegen $d \neq 0$ – Ebene parallel zur x_3 -Achse $a \cdot x_1 + b \cdot x_2 = 0$; $a, b \neq 0$: Ebene beinhaltet die x_3 -Achse

Beweis

Punktprobe mit den Punkten $X_3(0|0|z)$; $(z \in \mathbb{R})$ der x_3 -Achse führt zu der richtigen Aussage 0 = 0

2. Stunde

Ein nach dem Zufallsprinzip bestimmter Schüler der *dritten* Gruppe formuliert einen von der Gruppe entwickelten Merksatz, z.B:

Merke

Ist in einer Koordinatengleichung *eines* der drei Koordinatenglieder nicht aufgeführt, weil der Koeffizient = 0 ist, verläuft die Ebene parallel zu *der* Koordinatenachse, die durch das "fehlende" Koordinatenglied gekennzeichnet ist, wenn $d \neq 0$ ist, und beinhaltet genau *die* Koordinatenachse, die durch das "fehlende" Koordinatenglied gekennzeichnet ist, wenn d = 0 ist.

Mit Bezug darauf schlägt der Lehrer eine Unterteilung der Gesamtthematik vor.

Der Merksatz bezieht sich auf Koordinatengleichungen, in denen einer der Koeffizienten *a, b, c* gleich null ist. Da wir im Folgenden weitere Sonderformen betrachten, sollten wir eine sinnvolle Unterteilung der Gesamtthematik anstreben.

Der Lehrer zeigt auf die Überschrift "Sonderformen der Koordinatengleichung …" und gibt die Anweisung:

Wir ergänzen diese Hauptthematik um das gerade behandelte Teilthema. *Mögliche Schülerreaktion*

Nachträgliche Ergänzung der Überschrift um die Angabe des hier relevanten Teilthemas:

Sonderformen der Koordinatengleichung einer Ebene und damit verbundene besondere Ebenenlagen:

a) Einer der drei Koeffizienten a, b, c ist gleich null.

5.2.2 Zwei der drei Koeffizienten a, b, c der Koordinatengleichung $a \cdot x_1 + b \cdot x_2 + c \cdot x_3 = d$ (a, b, c, $d \in \mathbb{R}$; b, c, $d \neq 0$) sind gleich null

Die Schüler erwerben folgende inhaltliche und prozessbezogene mathematische Kompetenzen:

- Alle Punkte einer zur x_1, x_2 -Koordinatenebene parallelen Ebene im Abstand 5 LE besitzen die x_3 -Koordinate 5: x_3 = 5
- Die Aussage $x_3 = 5$ ist eine Koordinatengleichung, in der offenbar die Koeffizienten a und b = 0 sind, sodass in der Gleichung das x_1 und das x_2 -Glied fehlen.
- Wenn die Koeffizienten a und b gleich null sind, dürfen für die x₁- und die x₂-Koordinaten aller Ebenenpunkte beliebige Werte eingesetzt werden, während die x₃-Koordinate stets den Wert 5 besitzt.
- Die Punktprobe mit Punkten der beschriebenen Art, z.B. die Punkte A(3|-4|5), $B\left(-\sqrt{2}\left|\frac{2}{3}\right|5\right)$, $C(0|-\sqrt{3}|5)$, D(0|0|5) bestätigt die Gleichung $x_3=5$ als Koordinatengleichung einer Ebene, welche solche Punkte enthält.